# C.U.SHAH UNIVERSITY **Summer Examination-2016**

## Subject Name : Engineering Mathematics - IV

|      | Subject                                                                     | Code :4TE04EMT1                                                                                                                                                                                                                                                                                                                                | Branch:                                                                                                                                                                                                                                 | B.Tech (Auto,N                                                                                                                                                   | lech,EEE,EE,                                                                | IC,Civil,EC)      |                                                                              |
|------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------|
|      | Semester                                                                    | r:4 Date:0                                                                                                                                                                                                                                                                                                                                     | 07/05/2016                                                                                                                                                                                                                              | <b>Time : 2:</b>                                                                                                                                                 | 30 To 5:30                                                                  | Marks : 70        |                                                                              |
|      | Instructio<br>(1) U<br>(2) I<br>(3) I<br>(4) A                              | ons:<br>Use of Programmable<br>Instructions written on<br>Draw neat diagrams ar<br>Assume suitable data i                                                                                                                                                                                                                                      | calculator & any<br>main answer bo<br>nd figures (if neo<br>f needed.                                                                                                                                                                   | y other electron<br>bok are strictly t<br>cessary) at right                                                                                                      | ic instrument is<br>to be obeyed.<br>places.                                | prohibited.       |                                                                              |
| Q-1  |                                                                             | Attempt the followi                                                                                                                                                                                                                                                                                                                            | ing questions:                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                             |                   | (14)                                                                         |
| Atte | a)<br>b)<br>c)<br>d)<br>e)<br>f)<br>g)<br>h)<br>i)<br>j)<br>k)<br>mpt any f | Write Fourier sine tr<br>A vector $\vec{F}$ is soleno<br>In usual notation $E=$<br>The function $\bar{z}$ is not<br>The function $e^x \cos z$<br>The region $ z  \le 1$ is<br>Range – Kutta methor<br>The convergence in $\vec{r}$<br>method. True or Fals<br>If $\phi = 3x^2y - y^3z^2$<br>State Green's theore<br>If $y = 3x^3 - 2x^2 + z^3$ | ansform of $f(t)$<br>idal if<br>i 1 – $\nabla$ . True or<br>t analytic at any<br>s y is not harmor<br>represent open u<br>od is better than<br>the Gauss – Seic<br>se?<br>f, find gradient<br>m.<br>1 find $\Delta^3 y$ .<br>Q-2 to Q-8 | False<br>point. True or H<br>nic. True or Fals<br>init disk. True o<br>Tayler's metho<br>dal method is fa<br>$\phi$ at the point of                              | False?<br>e?<br>r False?<br>d. True or False<br>ster than Gauss<br>(1,-2,1) | e?<br>– Jacobi    | (01)<br>(01)<br>(01)<br>(01)<br>(01)<br>(01)<br>(01)<br>(02)<br>(02)<br>(02) |
| Q-2  | a)                                                                          | Attempt all question<br>Find the Fourier cost evaluate $\int_{-\infty}^{\infty} \frac{\cos \lambda x}{\cos \lambda x}$                                                                                                                                                                                                                         | <b>ns</b> integral of $f$                                                                                                                                                                                                               | $(x)=e^{-kx} (x)$                                                                                                                                                | > 0, <i>k</i> > 0). U                                                       | Jsing that        | (14)<br>(05)                                                                 |
|      | b)                                                                          | Solve the one dimen<br>0 with the initial con                                                                                                                                                                                                                                                                                                  | sional wave equinditions $u(x, 0)$                                                                                                                                                                                                      | $ \begin{array}{l} \operatorname{hation} \frac{\partial^2 u}{\partial x^2} = \frac{1}{c} \\ 0 = f(x), \frac{\partial u(x)}{\partial t} \end{array} \end{array} $ | $\frac{\partial^2 u}{\partial t^2}, -\infty < g(x)$ and                     | $x < \infty, t >$ | (05)                                                                         |
|      | c)                                                                          | boundary conditions<br>Find the Fourier tran                                                                                                                                                                                                                                                                                                   | $u, \frac{\partial u}{\partial x} \to 0 \text{ as } x$<br>as form of $f(x)$ it                                                                                                                                                          |                                                                                                                                                                  | 0 < x < a<br>$a \le x \le b$<br>x > b                                       |                   | (04)                                                                         |
|      |                                                                             |                                                                                                                                                                                                                                                                                                                                                | Pag                                                                                                                                                                                                                                     | e 1    3                                                                                                                                                         |                                                                             |                   |                                                                              |



(14)

(04)

(14)

(05)

(14)

(14)

#### Q-3 Attempt all questions

| a) | Determine analytic function | whose imaginary part is $e^x$ | $(x\cos y - y\sin y)$ | (05) |
|----|-----------------------------|-------------------------------|-----------------------|------|
|----|-----------------------------|-------------------------------|-----------------------|------|

- b) If f(z) = u + iv is an analytic function of z and  $u + v = e^{x} (\cos y + \sin y)$ , find f(z). (05)
- c) Find p such that the function  $f(z) = r^2 \cos 2\theta + i r^2 \sin p\theta$  is analytic. (04)

#### Q-4 Attempt all questions

- (14) (05)
- **a**) Under the transformation  $w = \frac{1}{z}$ 
  - i. Find the image of |z 2i| = 2.
  - ii. Show that the image of the hyperbola  $x^2 y^2 = 1$  is the lemniscate  $\rho^2 = \cos 2\theta$
- b) Find the bilinear transformation which sends the points  $z = 0, 1, \infty$  in to the points w = -5, -1, 3 respectively. What are the invariant points of the transformation? (05)
- c) Following table gives the values of *x* and *y*:

| x  | 1.0  | 1.05    | 1.10    | 1.15    | 1.20    | 1.25    | 1.30    |
|----|------|---------|---------|---------|---------|---------|---------|
| у  | 1.00 | 1.02470 | 1.04881 | 1.07238 | 1.09544 | 1.11803 | 1.14017 |
| dv |      |         |         |         |         |         |         |

Find  $\frac{dy}{dx}$  for x = 1.05 using forward difference.

#### Q-5 Attempt all questions

- a) Solve by Gauss Jordan method (05) 5x - 2y + 3z = 18, x + 7y - 3z = -22, 2x - y + 6z = 22.
- b) Solve the equation 27 x + 6y - z = 85, 6x + 5y + 2z = 72, x + y + 54z = 110 by Gauss – Seidel method.

c) If 
$$\vec{F} = (x + y + 1)i + j - (x + y)k$$
 find  $\vec{F} \cdot curl \vec{F}$ . (04)

#### Q-6

## Attempt all questions

- a) Verify Green's theorem for the function  $\vec{F} = (x + y) i + 2xy j$  and C is the rectangle in XY -plane bounded by x = 0, y = 0, x = a, y = b. (07)
- b) Verify Stokes's theorem for  $\vec{A} = (2x y)i yz^2 j y^2 z k$ , where S is the upper half surface of sphere  $x^2 + y^2 + z^2 = 1$  and C is its boundary. (07)

### Q-7 Attempt all questions

- a) Use the fourth order RungeKutta method to solve  $\frac{dy}{dx} = y \frac{2x}{y}$ , y(0) = 1. (05) Evaluate the value of y when x = 0.1
- **b**) Find the value of y for x = 0.1 by Picard's method, given that (05)

#### Page 2 || 3



$$\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1$$

| x                                                                                  | 30              | 35            | 40            | 45              | 50            |  |  |
|------------------------------------------------------------------------------------|-----------------|---------------|---------------|-----------------|---------------|--|--|
| у                                                                                  | 15.9            | 14.9          | 14.1          | 13.3            | 12.5          |  |  |
| Find value                                                                         | of $x$ correspo | onding to y   | = 13.6        |                 | ÷             |  |  |
| Attempt all                                                                        | questions       |               |               |                 |               |  |  |
| Construct Ne                                                                       | wton's forwa    | ard interpola | ation polynom | ial for the fol | llowing data: |  |  |
| Х                                                                                  | 4               | 6             | 8             |                 | 10            |  |  |
| Y                                                                                  | 1               | 3             | 8             |                 | 16            |  |  |
| Use it to find                                                                     | the value of    | y for $x = 1$ | 5.            |                 | ÷             |  |  |
| Use Lagrange's interpolation formula to find the value of y when $x = 10$ , if the |                 |               |               |                 |               |  |  |
| values of x and y are given below:                                                 |                 |               |               |                 |               |  |  |
| Х                                                                                  | 5               | 6             | 9             |                 | 11            |  |  |
|                                                                                    |                 |               |               |                 |               |  |  |

by Simpson's  $\frac{1}{3}$  rule.

Q-8

Page 3 || 3

